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INVITED ARTICLE

Landau–de Gennes modelling of nematic liquid crystal colloids

Miha Ravnika and Slobodan Žumera,b*

aFaculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia; bJ. Stefan Institute,

Jamova 39, 1000 Ljubljana, Slovenia

(Received 16 April 2009; final form 11 May 2009)

Phenomenological Landau–de Gennes modelling based on the free energy of nematic liquid crystal colloids is reviewed.
Nematic phase, gradient of order, and surface anchoring contributions to the total free energy are used. The numerical
finite difference relaxation technique is explained as an efficient tool for the minimisation of the free energy. Effects of
the mesh and mesh allocation are discussed. Various conceptually different colloidal structures are calculated to show
the universality of the model. Single particles, dipolar–quadrupolar dimers, entangled dimers, dimers bound by escaped
hyperbolic rings, and hierarchically patterned Saturn-ring colloidal superstructures are presented.

Keywords: Landau–de Gennes free energy; colloids; liquid crystal; modelling; structures

1. Introduction

Liquid crystal colloids are materials characterised by

the anisotropy of the liquid crystalline continuum

phase (1, 2) and discrete ordering of dispersed colloi-
dal inclusions. The long-ranged orientational ordering

of liquid crystals generates structural forces between

the colloidal inclusions which allow the assembly of

complex colloidal composites. The binding energies of

inclusions in liquid crystals are a few orders of magni-

tude higher as compared with water-based colloids.

The inherent effective elasticity of liquid crystals per-

mits structuring of the inclusions based on hierarchical
ordering (3, 4) and self-assembly (5). The primary

interest in liquid crystal colloids is related to their

applications in optics (6, 7), where the complex aniso-

tropic properties of liquid crystals are combined with

the optical response of colloidal dispersions.

Colloidal particles immersed in a liquid crystal host

interact with the surrounding liquid crystal primarily

through surface anchoring (8). The surface anchoring
perturbs the orientation of the liquid crystal, i.e. the

director n, by imposing the preferential orientation at

the particle walls. Such perturbation usually has a dipo-

lar or quadrupolar symmetry, and particles together

with the perturbation are often referred to as elastic

dipoles or quadrupoles (9). Elastic dipoles and quadru-

poles of particles with homeotropic (perpendicular)

surface anchoring are characterised by -1 hyperbolic
point defects or � 1=2 disclination Saturn-ring defects,

respectively (10). Particles with planar surface anchor-

ing have quadrupolar symmetry and generate two

� 1=2 ‘boojum’ surface defects. The symmetry and

the structure of the director field around particles is

determined by the surface anchoring strength, particle

size, confinement and external fields (11).

Particles dispersed in a liquid crystal host are sub-

jected to long-range interparticle structural forces.

These are thermodynamic forces and their source at
the molecular scale are van der Waals intermolecular

interactions. At the particle scale, however, single

molecular contributions typically smear out and the

liquid crystal effectively acts as an elastic medium

trying to retain the orientational order of its mole-

cules. At these scales, structural forces are therefore

considered as effective elastic forces which try to mini-

mise the perturbation of the director field induced by
inclusions. The profile of structural forces is typically

highly anisotropic and is governed by the geometry of

the system and symmetry of the director field. The

complex interactions between inclusions in liquid crys-

tals lead to complex relaxations in colloidal disper-

sions that give rise to numerous colloidal structures.

In recent years, assisted and true self-assembly has

been observed for various colloidal structures. The first
observed liquid crystal colloidal structures were chains

of elastic dipoles (1, 12, 13). The assembly of dipolar

chains at a larger length scale was realised by phase

separation in a binary mixture of silicone oil and nematic

liquid crystal (14). Dipolar chain segments were further

observed to build complex two-dimensional (2D) cluster

aggregates (15, 16). Quadrupolar particles in a nematic

were observed to form kinked chains (17). Only recently
have the assembly of regular 2D colloidal crystals of

elastic dipoles, quadrupoles and their combination
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been demonstrated (18–20). At the interfaces, 2D hex-

agonal ordering of glycerol droplets has been observed

(21–23). In addition, it was reported on particle-

stabilised gels in a cholesteric liquid crystal (24), orienta-

tional ordering of magnetic nanowires in a nematic (25),

combined charge and nematic stabilisation of a colloidal

dispersion (26), helical self-ordering of cellulose micro-
fibrils (27), photonic band study in nematic solutions

(28), and laser tweezers measurements of interparticle

interactions in nematic liquid crystal (16, 29, 30).

Depending on the size and typical scale of a con-

sidered system, the theory and modelling of liquid crys-

tal colloids rely on molecular, effective molecular or

phenomenological approaches (31–34). These

approaches are complemented by a topological
approach that takes into account the symmetries of

nematic liquid crystals. Via topological conservation

rules, topology allows predictions of the general fea-

tures of defect-mediated colloidal particle assemblies.

Molecular approaches provide insight into the detailed

structure of defects, explain the role of the thermal

fluctuations, and allow modelling of truly nano-sized

inclusions. At experimentally accessible micrometre
scales, it is convenient to use phenomenological mean-

field approaches based on the minimisation of the free

energy that is obtained by the expansion in terms of a

mesoscopic order parameter. This is usually called the

Landau–de Gennes (LdG) free energy and is charac-

terised by a few phenomenological material constants

that rely on experiments. In general, LdG modelling

leads to only a few analytical solutions so numerical
methods such as relaxation techniques with finite dif-

ferences or finite elements and lattice Boltzmann algo-

rithms are commonly used (35–37). For complex

systems such as liquid crystal colloids, theoretical stu-

dies are particularly useful, since they cover a large

spectra of material parameters and can thus be used

to search for and predict new structures.

The LdG free energy approach can be used in unrest-
ricted and confined liquid crystal geometries. In particu-

lar, it is useful in multi-particle colloidal systems when

the particles are at close distances and generate defects in

the liquid crystalline order. The inherent possibility to

incorporate defects also allows for modelling of the

defects with higher topological charges and higher wind-

ing numbers (38, 39). The dynamics of particles within

LdG modelling is typically described in terms of quasi-
dynamics. Approaches have been proposed that use true

nematodynamics, yet they are typically demanding and

require different methods to locate the particles (40, 41).

Including chirality within the LdG framework is

achieved by extending the free energy functional with

additional phenomenological terms. This generalised

LdG free energy can be used for modelling of inhomo-

geneous cholesteric and blue phases (42, 43).

In this review we show how one can use the LdG

phenomenological free energy in modelling nematic

liquid crystal colloids. The basic characteristics of the

numerical modelling are addressed. Colloidal config-

urations with single elastic dipoles and quadrupoles,

entangled dimers and dimers with escaped hyperbolic

rings are presented. Hierarchical ordering of smaller
sub-micrometre particles into a Saturn ring of a micro-

metre-sized particle is also shown.

2. LdG modelling

In this section we introduce the main features of this

phenomenological approach. Particular emphasis is

placed on the nematic order parameter, control of

the nematic degree of order, nematic liquid crystal

elasticity and surface anchoring functionals. Finally,

the numerical finite difference relaxation method is

discussed.

2.1 Nematic order parameter

The long-range orientational order of the molecules is

the central phenomenon which makes liquid crystals

unique compared with, for example, solid crystals. It

can continuously vary at scales from nanometres

to micrometres and is typically highly responsive
to external fields. In confined geometries, opposing

orientational ordering of different surfaces can lead

to the formation of defect regions, where the orienta-

tion of the molecules is undefined. In nematic liquid

crystals, the defects are either lines or points (44).

A nematic liquid crystal requires a tensorial order

parameter field Qij to characterise all of its orientational

degrees of freedom: orientation of the director (two
angles), orientation of the possible biaxial ordering

relative to the director (one angle), nematic degree of

order S and biaxiality P. The director nðr; tÞ, describes

the average orientation of nematic molecules at a given

position r at time t, with orientations nðr; tÞ ! �nðr; tÞ
being equivalent. More precisely, the director is given as

the ensemble average of molecular orientations within a

given volume segment or, due to ergodicity, as the time
average of a single molecule orientation at a given

position. Orientational fluctuations of the molecules

around the director are quantified by the nematic

degree of order S, which is defined as an ensemble

average of the second Legendre polynomials evaluated

for the dot product between the molecular orientations

and the director. The values of S lie in the interval

½� 1
2
; 1�: S ¼ 1 corresponds to a perfect nematic order,

S ¼ 0 characterises a completely disordered (isotropic)

state, and S ¼ � 1
2

determines perfect molecular order-

ing within the plane perpendicular to n. It is common

for nematic orientational order to become biaxial if
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external fields (e.g. surface, electric, magnetic) break the

rotational symmetry of the molecular orientational

fluctuations around the director. Values of the biaxial-

ity parameter P lie in the interval ½� 3
2
; 3

2
�, where P ¼ 0

characterises uniaxial ordering and jPj ¼ 3
2

corresponds

to the perfect biaxial ordering along the secondary

director eð1Þ which is perpendicular to n. In general,
the order parameter tensor Qij reads

Qij ¼
S

2
ð3ninj � �ijÞ þ

P

2
e
ð1Þ
i e
ð1Þ
j � e

ð2Þ
i e
ð2Þ
j

� �
; ð1Þ

where eð2Þ ¼ n · eð1Þ. By definition, the tensor Qij is
symmetric and traceless. Its largest eigenvalue is the

nematic degree of order S and the corresponding

eigenvector the director n. The other two eigenvalues

are equal to � 1
2
ðSþ PÞ and � 1

2
ðS� PÞ with the cor-

responding eigenvectors eð1Þ and eð2Þ, respectively. In

the case of uniaxial nematics that are only weakly

deformed, we have S ¼ constant and P ¼ 0.

2.2 Nematic–isotropic transition

For most liquid crystal materials, the stability of the

nematic mesophase depends either on temperature or

on molecular concentration. In this work, we are inter-

ested in thermotropic liquid crystals, where the tem-

perature determines the liquid crystalline mesophase.
The nematic–isotropic (NI) phase transition relevant

for our work is discontinuous (first order).

An established approach to model the NI transi-

tion is to use the invariants of the nematic order para-

meter tensor and construct Landau expansion of the

free energy. The free energy volume density fphase with

minimum number of terms needed to model the NI

transition reads (1):

fphase ¼
1

2
aðT � T�NIÞQijQji þ

1

3
BQijQjkQki

þ 1

4
CðQijQjiÞ2; ð2Þ

where a, B and C are nematic material parameters, T is

temperature and T�NI is the supercooling temperature.

Typical values for the material parameters are

a ,105Jm�3K�1, B ,� 106Jm�3 and C ,106Jm�3. In

the nematic phase both the first and second prefactor
in the expansion are negative and only C > 0 ensures that

the free energy density functional is bounded from

below. Unlike the constants B and C, the first prefactor

aðT � T�NIÞ is temperature dependent and therefore

drives the NI transition. We note that if nematic materi-

als are intrinsically biaxial, a Landau expansion that also

includes sixth-order terms has to be constructed (45).

Free energy functional which drives the NI transi-
tion in terms of the uniaxial nematic order can be

obtained from Equation (2) by assuming uniaxial

ordering of the nematic [QU
ij ¼ Sð3ninj � �ijÞ=2].

Trace invariants of the uniaxial order parameter ten-

sor simplify as QU
ij QU

ji ¼ 3S2=2 and QU
ij QU

jk QU
ki ¼ 3S3=4.

Rewriting fphase in terms of S one finds:

fphase ¼
3

4
aðT � T�NIÞS2 þ 1

4
BS3 þ 9

16
CS4: ð3Þ

It is now easy to interpret the role of all three
Landau expansion terms: the first term drives the

transition, the second term ensures asymmetry of S

by breaking the S to -S invariance, and the third term

bounds the values of S from below. The equilibrium

nematic degree of order Seq is found by minimising the

corresponding free energy FORD ¼
R

fphasedV . The

minimisation gives

Seq ¼
0; T>TNI

1
2
�B=3C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB=3CÞ2 � 8aðT � T�NIÞ=3C

q� �
; T<TNI

0
@

where TNI is the NI transition temperature. The super-
cooling temperature T�NI, NI transition temperature

TNI and the super-heating temperature T��NI are related

via material parameters as TNI ¼ T�NI þ B2=27aC and

T��NI ¼ T�NI þ B2=24aC.

2.3 Gradient of order and nematic elasticity

Nematic materials act as effective elastic materials if
their orientational ordering is subjected to spatial var-

iations. Phenomenologically, in a similar manner as for

the nematic degree of order, a free energy functional is

constructed from the scalar invariants of the order

parameter tensor to penalise the elastic distortions.

Free energy terms are usually second order in deriva-

tives and satisfy the inversion symmetry for the non-

chiral materials. A common approximation to simplify
the free energy density functional is to use one elastic

constant approximation. The gradient free energy fgrad

within the one-constant approximation reads

fgrad ¼
1

2
L
@Qij

@xk

@Qij

@xk

; ð4Þ

where L is the single elastic constant, xi are Cartesian

coordinates and summation over repeated indices is

assumed. If the system is uniaxial, the gradient free
energy (Equation (4)) can be rewritten in terms of the

director n and nematic degree of order S as

fgrad ¼
1

2
Kð�nÞ2 þ 3

4
Lð�SÞ2; ð5Þ

where the single Frank elastic constant K ¼ 9LS2=2.

Note that the first term in Equation (5), which
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characterises the director elasticity, differs from the

standard Frank elastic term K½ð� � nÞ2 þ ð�·nÞ2�=2

by a surface term (1). The suitability of the one-

constant approximation is highly dependent on the

material. In general, any elastic deformation can be

decomposed into three basic deformation modes,

splay, twist and bend (1). For 5CB nematic, the splay,
bend and twist elastic constants differ from the average

value K ¼ 6 · 10�12N by around 40% (see (46)).

To incorporate the three basic deformation modes,

the free energy density is expanded into three terms

with the corresponding elastic constants L1, L2 and L3.

Such generalised formulation of the elastic free energy

volume density fgrad commonly reads (47–49)

fgrad ¼
1

2
L1
@Qij

@xk

@Qij

@xk

þ 1

2
L2
@Qij

@xj

@Qik

@xk

þ 1

2
L3Qij

@Qkl

@xi

@Qkl

@xj

: ð6Þ

The Li are independent of the nematic degree of

order and should be interpreted as the direct strength

of the inter-molecular interactions. In general, a more

complex elastic free energy functional constructed

from scalar invariants of the order parameter tensor

is allowed by symmetry (50).

Elastic free energy fgrad based on the order para-

meter tensor is rewritten for a uniaxial nematic in
terms of the director field n (see (51)). Using

QU
ij ¼ Sð3ninj � �ijÞ=2, nini ¼ 1 and nið@ni=@xkÞ ¼ 0

the elastic free energy density in the standard Frank–

Oseen form f FO
grad reads as:

f FO
grad ¼

1

2
K1ð� � nÞ2

þ 1

2
K2 n � ð� · nÞ½ �2þ 1

2
K3 n · ð� · nÞ½ �2; ð7Þ

where Ki are Frank elastic constants given as

combinations of Li: L1 ¼ ðK3 þ 2K2 � K1Þ=9S2,

L2 ¼ 4ðK1 � K2Þ=9S2 and L3 ¼ 2ðK3 � K1Þ=9S3. The

constants Ki incorporate the degree of nematic order

as an internal parameter and are proportional to S2.

The possible advantage of using Ki set of constants

instead of Li, is that they characterise basic deformation
modes directly: K1 splay, K2 twist and K3 bend defor-

mation. The Frank–Oseen free energy can be extended

by the divergence free energy density terms f13 (see (52))

and f24 (see (53)) allowed by the symmetry.

Chiral nematic materials are modelled by including

pseudoscalar phenomenological terms in the total free

energy. Chirality of the material is characterised by the

pitch p0 of the helix that forms when the material is in the
cholesteric phase. Such a chiral gradient free energy den-

sity reads within a single elastic approximation as (54)

f chiral
grad ¼

L

2

@Qij

@xk

@Qij

@xk

þ 2q0L"iklQij

@Qlj

@xk

; ð8Þ

where q0 is a chiral parameter related to the pitch of

the cholesteric helix by p0 ¼ 2�=q0 and "ikl is the fully

antisymmetric alternating tensor equal to +1 (-1) if
i; k; l is an even (odd) permutation of 1; 2; 3 and zero

otherwise. We should comment that the above chiral

gradient free energy (Equation (8)) not only applies for

cholesteric phases, but can also be used to model

cholesteric blue phases (42, 43).

2.4 LdG free energy

The elastic free energy fgrad and the free energy char-

acterising the nematic degree of order fphase constitute
the LdG free energy when combined into a single

functional. Denoting the total LdG free energy

volume density as fLdG one can write

fLdG ¼ fgrad þ fphase: ð9Þ

The LdG approach allows phenomenological

modelling of the nematic liquid crystals at the micro-

metre and sub-micrometre mesoscale as it incorpo-
rates both nematic elasticity and spatial variation of

the nematic degree of order. It can be applied for

arbitrary geometries, different length scales and is

easily extendable to include the effects of external

fields. The only inherent limitation of the LdG model

is that it becomes less reliable at nanometre scales

because of its mean-field character. The order para-

meter tensor used as the main element of the model
namely assumes an ensemble average of molecular

orientations, which are typically a few nanometres in

length. Detailed effects at true nanometre scales are

therefore more properly accessed by molecular

approaches, such as the Gay–Berne potential-based

Monte Carlo studies (55).

The ratio of the two energy contributions in LdG

free energy introduces a characteristic length scale,
referred to as nematic correlation length �N. To extract

�N from fLdG, we rewrite the free energy density fLdG

within the one-elastic-constant approximation using

uniaxial order parameter tensor QU
ij and assuming

spatial variations of S alone (�S�0, �n ¼ 0)

fLdG ¼
3

4
aðT � T�NIÞS2 þ 1

4
BS3 þ 9

16
CS4

þ 3

4
Lð�SÞ2: ð10Þ

Minimising Equation (10) with the Euler–

Lagrange (EL) formalism one obtains
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3

2
L�2S � @fLdG

@S
¼ 0: ð11Þ

Linearising the EL equation (11) for small spatial

perturbations from the equilibrium, SðxiÞ ¼
Seq þ�SðxiÞ, the nematic correlation length is obtained:

�N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

L

ð@2fLdG=@S2ÞjSeq

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

aðT � T�NIÞ þ BSeq þ 9
2

CSeq

s
: ð12Þ

The physical interpretation of �N is that it deter-

mines the spatial scale for the variation of the nematic

degree of order. Its role in nematics is most pro-
nounced in defects as it roughly determines their size.

Here �N is also the central parameter which controls

the mesh resolution in numerical calculations.

Typically, �N is of the order of a few nanometres.

To show the role of S, P and the components of Qij

in real systems, an example of their spatial profile for an

elastic quadrupole is presented in Figure 1. The calcula-

tions were performed with 1�m homeotropic particles in
a uniform cell. Further details of the numerical model-

ling are presented in the following sections. One can

nicely see the changes in S and P in the region where

the curves pass through the Saturn-ring defect.

Components of Qij also only vary close to the particle,

whereas further away they converge to a constant value

denoting uniform ordering. Here S and P are calculated

from trace invariants of the order parameter tensor by
solving the set of equations trðQijQjiÞ ¼ ð3S2 þ P2Þ=2

and trðQijQjkQkiÞ ¼ 3SðS2 � P2Þ=4.

As an internal scale of the nematic liquid crystal,

the nematic correlation length in general does not

allow for scaling of a given colloidal geometry, cell

thickness, particle size or surface anchoring. Yet scal-

ing can be applied in systems where the total free

energy consists primarily of the elastic (Frank’s) con-

tribution and Landau’s contribution due to the varia-

tion of the degree of order is small. Modelling with the

order parameter tensor is then roughly equivalent to
the modelling with the vectorial director field, which is

scale-less. Usually scaling approximation holds in sys-

tems with no or very localised defects. Scaling can also

be nicely applied in colloidal structures with defects

that have escaped core regions.

An external electric field couples with the non-

polar nematic through a dielectric interaction with

the induced dipoles of the nematic molecules. These
dipoles are oriented either parallel or perpendicular to

the director, depending on the polarisability of

nematic molecules with either positive or negative

dielectric anisotropy "a. Within the LdG framework,

the dielectric coupling is introduced as an additional

free energy density contribution fEM (1, 56):

fEM ¼ �
1

2
"0 �"E2

i þ
2

3
"mol

a QijEiEj

� �
; ð13Þ

where "0 is the dielectric vacuum permittivity constant,
�" ¼ ð2"? þ "kÞ=3 is the average liquid crystal permit-

tivity, "mol
a ¼ "mol

k � "mol
? is the molecular dielectric

anisotropy (the macroscopic dielectric anisotropy

reads as "a ¼ S"mol
a ), and Ei is the external electric

field. Eigenvalues of the molecular dielectric permit-
tivity tensor "mol

? and "mol
k correspond to eigenvectors

perpendicular and parallel to the director, respec-

tively. Dielectric coupling in Equation (13) requires a

true local electric field, therefore in a most general

approach Maxwell’s equations also have to be solved

in accordance with the equations for the order para-

meter tensor to obtain the equilibrium profile of the

nematic.

2.5 Surface anchoring

Interfaces with various materials affect liquid crystal

ordering by imposing a preferred degree of order

and a preferred molecular orientation. Such beha-

viour is usually referred to as anchoring (8). The
most common types of anchoring are planar and

perpendicular (homeotropic) ordering with respect

to the surface.

Within the LdG framework, the uniform surface

anchoring is typically modelled by using a Rapini–

Papoular-like surface free energy density functional

f uni
surf :

Figure 1. Spatial profiles in the fixed Cartesian coordinate
frame Qxx, Qyy, Qzz, degree of order S and biaxiality P. At
r,0:56d curves pass through the ring defect and both S and
P exhibit strong changes. For r=d > 0:6 the field becomes
uniform: S ¼ constant, P ¼ 0 and Qij ¼ constant.
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f uni
surf ¼

1

2
W uniðQij �Q0

ijÞ
2; ð14Þ

where Wuni is the uniform surface anchoring strength

and Q0
ij is the surface-preferred order parameter ten-

sor. Here f uni
surf penalises quadratically all deviations of

Qij from Q0
ij. Therefore, Q0

ij imposes not only the pre-

ferred direction at the surface, the easy axis, but also
the surface degree of order and biaxiality. Typically,

values for Wuni range from 10�3 to 10�7Jm�2 (see

(57)), where 10�3–10�4Jm�2 is considered strong

anchoring and 10�6–10�7Jm�2 is considered weak

anchoring.

Surfaces with planar anchoring can impose not

only uniform but also degenerate surface ordering

where molecules prefer to lie in a plane with no in-
plane preferred direction. Such anchoring, degenerate

in the polar angle, can be incorporated into numerical

calculations by using a new degenerate surface poten-

tial f
deg
surf . Such a degenerate surface functional was

introduced by Fournier and Galatola (58):

f
deg

surf ¼W
deg
1 ðQij

˜ �Qij
˜ ?Þ2 þW

deg
2 ðQij

˜ Qij
˜ � 9S2

SÞ
2; ð15Þ

where W
deg
1 and W

deg
2 are two surface anchoring con-

stants, SS is the surface-preferred degree of order,

Qij
˜ ¼ Qij þ Seq�ij=2, and Qij

˜ ? is defined using surface

normal �i as follows:

Qij
˜ ? ¼ PikQkl

˜ Plj ; Pij ¼ �ij � �i�j: ð16Þ

In Equation (15) the first term is constructed using
surface projections Pij and imposes only orientational

in-plane ordering with �i as the plane normal. The

second term determines the surface degree of order

by imposing a quadratic potential for S2.

The strength of the uniform surface anchoring can

be interpreted in terms of Kleman–de Gennes extra-

polation length �S (see (59, 60)). It is introduced as

�S ¼ K=Wuni (where K is the effective Frank elastic
constant) and measures relative strength of nematic

elasticity with respect to the surface anchoring.

Extrapolation lengths of surfaces with strong anchor-

ing (Wuni,10�3Jm�2) are for a typical nematic

(K,10�11N) at the order of 10nm as for surfaces

with weak anchoring (Wuni,10�6Jm�2) �S,10�m.

2.6 Numerical minimisation technique

The LdG free energy density and surface anchoring

functionals are the central elements that govern the

dynamical evolution and equilibrium configurations

of nematic colloids. Using the free energy density

terms to construct the total free energy F as

F ¼
R

f dV one builds a thermodynamical potential

which drives the system towards stable or metastable

solutions. An absolute minimum in the free energy

corresponds to the equilibrium state, whereas possible

higher-value minima give metastable configurations.

The typical scale for the free energy changes in nematic

colloids with micrometre-sized particles are around
100–10; 000 kBT (where T is temperature).

The total free energy is minimised by using the EL

algorithm. EL equations for bulk and surface of the

nematic read as

@f

@Qij

� �
@f

@�Qij

¼ 0 ðbulkÞ; ð17Þ

@f

@�Qij

� n ¼ 0 ðsurfaceÞ: ð18Þ

Here, n is the surface normal. Applying the above
formalism for the most commonly used LdG free energy

density fLdG (Equation (9)) and Rapini–Papoular-like

surface free energy f uni
surf (Equation (14)) yields

hbulk
ij ;L�2Qij � AQij

� BQikQkj�CQijðQklQlkÞ ¼ 0; ð19Þ

hsurf
ij ;L

@Qij

@xk

�k þWðQij �Q0
ijÞ ¼ 0; ð20Þ

where Equation (19) determines the bulk behaviour

and Equation (20) determines the homeotropic surface

behaviour of the component Qij. Here hbulk
ij and hsurf

ij are
referred to as molecular fields, and A ¼ a ðT � T*

NIÞ.
We avoid detailed quantitative modelling of materials,

therefore in the following we use a single elastic con-

stant (L) approximation. The equilibrium profile of the

order parameter tensor Qij is found by solving the

above set of six coupled non-linear bulk nematic equa-

tions (one for each independent component of Qij) with

proper boundary conditions (e.g. Equation (20)). This
is done numerically by using an explicit relaxation algo-

rithm on a cubic mesh. Note that in principle six

coupled equations can be reduced to five by taking

into account the condition trQij ¼ 0, but this typically

severely reduces the stability of the numerical scheme.

The relaxation algorithm assigns an additional

relaxation coordinate t (which can be interpreted as

time) to the order parameter tensor. The coordinate t

characterises the iterative evolution of the order para-

meter tensor profile from the initial configuration to a

finite equilibrium state. Having Qij dependent both

on the position vector r and t (Qij ¼ Qijðr; tÞ), the
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molecular field (Equations (19) and (20)) is extended

by an explicit derivative with respect to t when apply-

ing the EL formalism:

�
dQij

dt
¼ h...

ij ; ð21Þ

where � is a numerical relaxation constant and h...
ij

denotes hbulk
ij or hsurf

ij . By discretising (21) in time and
introducing an explicit iteration scheme one obtains:

Qtþ�t
ij ¼ Qt

ij þ
�t

�
h...;t

ij : ð22Þ

Here �t is the time interval between two sequent

iteration steps. The number of iteration steps is highly
dependent on the initial configuration and size of the

system (the number of mesh points) but typically

ranges from 1000 to 100,000.

The order parameter tensor Qij is spatially discre-

tised on a cubic mesh with either uniform or variable

mesh density. The variable mesh is finer in the regions

populated by particles but coarser in the surroundings.

Resolution of the finer mesh �x is determined accord-
ing to the nematic correlation length �N. Empirically

we have found that for �N=�x ,< 0:7, relaxation of the

nematic degree of order S within Qij is ensured (no

defect-pinning), whereas for �N=�x ,> 1, only tensor

profiles with constant S can be modelled. To maximise

the physical size of the simulation box, a mesh with

variable mesh density is often used for systems where

an ‘empty’ nematic cell is modelled and the effect of
the side surfaces is to be minimised (see Figure 2(a)).

The finer internal mesh has a resolution which allows

modelling with a varying degree of order, whereas at

the external mesh only elastic distortions with a con-

stant S have to be ensured.

All mesh points are assigned logical markers which

characterise their role (their governing equation)

within the calculations. Three categories of logical

markers are introduced: bulk, surface and particle

interior. Bulk points obey relaxation equations with

hbulk
ij , surface points use hsurf

ij , whereas at the particle

points Qij ¼ 0. In order to introduce the surface of a

spherical particle located at ðxcol; ycol; zcolÞ with the

radius rc, a criterion is introduced for logical markers
which separates bulk, surface and particle interior as

logicalmarker

¼

particle if
ðx� xcolÞ2

ðrc ��x=2Þ2
þ ðy� ycolÞ2

ðrc ��y=2Þ2
þ ðz� zcolÞ2

ðrc ��z=2Þ2
<1

surface if
ðx� xcolÞ2

ðrc ��x=2Þ2
þ ðy� ycolÞ2

ðrc ��y=2Þ2
þ ðz� zcolÞ2

ðrc ��z=2Þ2
� 1

and
ðx� xcolÞ2

ðrc þ�x=2Þ2
þ ðy� ycolÞ2

ðrc þ�y=2Þ2
þ ðz� zcolÞ2

ðrc þ�z=2Þ2
<1

bulk otherwise:

0
BBBBBBBBBBBBBB@

The logical marker allocation is presented graphi-

cally in Figure 2(b), where the white background col-

our represents bulk, the light grey the surface and the

dark grey the interior of the particles.

The parameter values in the following numerical cal-

culations correspond roughly to 5CB nematic liquid crys-
tal and strong homeotropic surface anchoring.

The following values are used if not stated

differently: L ¼ 4 · 10�11N, A ¼ �0:172 · 106Jm�3,

B ¼ �2:12 · 106Jm�3, C ¼ 1:73 · 106Jm�3, particle

diameter d ¼ 2rc ¼ 1�m, cell thickness h ¼ 2�m, home-

otropic anchoring strength Wuni ¼ 1 · 10�2Jm�2, and

mesh resolution (cubic mesh) �x ¼ 10nm. These para-

meters give �N ¼ 6:63nm and Seq ¼ 0:533.

3. Colloidal structures

The numerical modelling using LdG free energy mini-

misation is illustrated with examples of colloidal

Figure 2. (a) Mesh with variable mesh density: the inner finer mesh (in red) enables full detailed calculation with the order
parameter tensor, whereas the coarser mesh (in black) allows only elastic (Frank’s) deformations of the tensor. (b) Allocation of
the particle surface: particle interior (dark grey), surface (light grey) and bulk (white). Colour refers to the online version.
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structures. We show colloidal particles with director

fields characterised by elastic dipolar, quadrupolar

and dipolar–quadrupolar director configurations,

entangled dimer and dimer bound by an escaped

hyperbolic ring, referred to also as ‘bubble gum’.

3.1 Single particles

Single micrometre particles with homeotropic surfaces

form director fields characterised either by elastic

dipoles or quadrupoles. Which of the two possible

structures is stable and which is metastable depends

primarily on particle size, surface anchoring strength,

confinement and external field. In Figure 3, homeotro-

pic particles (d ¼ 2�m) surrounded by a dipolar and
quadrupolar director structure are presented. Defects

are characterised by the depression of order as was

illustrated in Figure 1. Therefore, one can visualise

them by simply tracing a chosen value of the order

parameter. We chose visualisation via isosurfaces of a

selected constant value of the nematic degree of order S.

The hyperbolic -1 point defect of the dipolar con-

figuration opens into a small defect ring which is char-
acterised by the winding number � 1=2 (see (61)). The

LdG free energy namely minimises by transforming

the point defect into a small ring (62–64). The position

of the hyperbolic defect is at 1:23rc which is in good

agreement with results from Lubensky et al. (1:19rc;

multipole expansion (39)). For the elastic quadrupole

we find the Saturn ring at 1:15rc. Lubensky et al. (39)

found the position of the defect ring at 1:08rc, whereas
Kuksenok et al. (65) reported 1:25rc.

To ensure that in the calculations the dipolar direc-

tor configuration forms around the particle and to

speed up the relaxation process, calculations are

started from a specific initial condition. For the initial

condition in the close surroundings of the particle, the

tensor profile is chosen to have its director component

as obtained from a multipole expansion (9):

n ¼ ez � Pr2
c

r� rcol

jr� rcolj3
; ð23Þ

where ez is a unit vector pointing along the far-field

director, P is the constant which determines the initial

position of the point defect (we have used P ¼ 2:08), rcol

is the position of the colloidal particle, r is the position

vector, and by switching plus and minus one controls

the orientation of the elastic dipole. Note that Equation

(23) has to be normalised if used at positions close to the

particle. For particles smaller than a few hundred nano-

metres, the dipolar configuration is energetically highly

unfavourable in comparison to the quadrupolar con-

figuration (9) and becomes unstable.
Calculations of the quadrupolar nematic config-

uration are started from a uniform initial tensor con-

figuration, corresponding to the uniform spatially

independent director field n. We observe that by start-

ing from a uniform orientation, the Saturn-ring defect

gradually starts to form at the equator of the particle

in the plane perpendicular to n at the very beginning of

our calculations. The defect first lies at the surface of
the particle, but if the anchoring is strong enough, it

quickly (within few hundred explicit iteration steps)

detaches from the surface and forms a real ring. By

changing the direction of initial uniform director

around a particle, one can also control the initial

orientation of the Saturn-ring defect, as it always lies

in the plane perpendicular to n.

3.2 Dipolar and quadrupolar dimers

The interaction between elastic dipoles and quadru-

poles is anisotropic. A pair of elastic dipoles has two
different stable configurations in a uniform nematic

field. Two antiparallel dipoles attract one another

sideways, as two parallel dipoles form a linear chain.

A quadrupolar dimer has one sideways stable config-

uration. Particles attract one another at an angle of

79� with respect to the far-field director.

Binary mixtures of elastic dipoles and quadrupoles

can be experimentally realised at suitable cell thick-
nesses of approximately 1:5d (see (20)). At such ‘inter-

mediate’ confinement the (meta)stable dipolar and

quadrupolar configurations become energetically

comparable and thus coexist. This mixed type of direc-

tor field symmetry results in a new complex interpar-

ticle potential which allows a broad variety of new

binary colloidal crystals to be built in two dimensions.

A pair of dipolar and quadrupolar particles has
three stable equilibrium configurations. Figure 4(a)

shows a configuration where the dipolar colloidal par-

ticle is attracted directly along the director to the

quadrupolar colloidal particle. The pair shares the

Figure 3. Spherical beads in a nematic liquid crystal: elastic
dipole (left), elastic quadrupole (right). For defect
visualisation we choose an isosurface with S ¼ 0:48. The
top view on the planar cell is presented. The thickness of
the planar cell h ¼ 3�m.
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hyperbolic hedgehog point defect, which lies in

between them as shown schematically in Figure 4(b).

The two additional stable configurations are sym-

metric with respect to each other. One of the config-

urations is shown in Figure 4(c) with the scheme of the
corresponding director in Figure 4(d). Here, the elastic

dipole is attracted to the quadrupole at a certain angle

with respect to far-field director. We find that the

interparticle separation is equal to 1:03d and the rela-

tive angle of the pair with respect to the director is 71�.
One can see that for the linear pair along the director,

the hyperbolic point defect has opened due to confine-

ment into a small ring as already observed in the
dipolar 2D crystals. Interestingly, in the sideways

pair configuration the quadrupolar defect ring is

strongly bent.

From a large number of different mixed colloidal

crystals we focused on the most dense colloidal struc-

ture. The results (see Figure 5) reveal that defect rings

in such 2D binary colloidal configurations can be

highly deformed (see Figure 5(a)). In general, binary
2D colloidal crystals have lower symmetry than the

simple ‘only-dipolar’ and ‘only-quadrupolar’ crystals.

The unit cell size and number of particles within a unit

cell is therefore typically larger compared with simple

crystals. Modelling of such crystallites is more

demanding and time consuming. In addition to the

increased unit cell size, additional particle position
parameters have to be minimised. The spatial depen-

dence of two such parameters, particle positions I and

J, for the most dense binary crystal is presented in

Figure 5.

3.3 Entangled dimers

Liquid crystals around colloidal particles adopt a vari-

ety of different configurations with the same external
parameters, such as confinement, external fields, sur-

face anchoring and particle size. Nevertheless, the

absolute stability of various colloidal structures

depends on their total free energy. All stable or meta-

stable structures are characterised by a local minima in

the free energy profile where the exact value of their

total free energy determines their stability or metast-

ability. Energy barriers between the structures are
typically much larger than kBT; therefore thermal

Figure 4. (a) A pair of dipole–quadrupole particles, attracted along the director and (b) the corresponding director field. (c)
Dipole–quadrupole pair, attracted sideways and (d) the corresponding director field.
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fluctuations are insufficient to trigger structural tran-

sitions. Using numerical calculations we were able to

predict new nematic colloidal structures bound by

delocalised defect loops (38, 66). Temperature quench

from the isotropic to the nematic phase is used as a

procedure to find such entangled assemblies. Nano-
scale studies of related structures were discussed else-

where (36, 55, 67–69)

The probability of finding a particular colloidal

structure depends primarily on its total free energy

but also on external parameters, such as the material

flow, temperature profile, domain walls and kinetics

of defects. The external parameters can energetically

favour a particular colloidal structure during its
formation. In general, the energy scale of nematic

colloids far exceeds kBT , and so the frequency of

occurrence of a particular configuration is not deter-

mined by the Boltzmann distribution. The relative

frequency of a pair of structures does not depend

solely on the difference of their total free energies.

This must be borne in mind when building complex

colloidal superstructures.
Directed formation of particular structures is

achieved or avoided in numerical calculations by

choosing suitable initial conditions. To generate elas-

tic dipoles and quadrupoles we had to use suitable

Ansatz functions. A limitation of the free energy mini-

misation method is that it finds only one (meta)stable

configuration of the nematic around the colloidal par-

ticles for a given initial nematic configuration. A more

general way is to use random orientations (spins) at all

mesh points in the starting configuration, since such a

completely disordered nematic state helps to avoid

energy barriers between the configurations and can

access solutions in these additional local free energy
minima.

When performing a sudden isotropic-to-nematic

transition, the phenomenon of entanglement is

observed in nematic colloids. Defects are unable to

relax completely since they are hindered by the pre-

sence of particles. Therefore, metastable configura-

tions can arise where complex defect loops entangle

several colloidal particles. Three types of entangled
dimers are found: ‘figure of eight’, ‘figure of omega’

and ‘entangled point defect’. A particle dimer bound

by a figure of eight defect structure is shown in Figure

6(a), with the local profile of the director in the inter-

mediate region between the particles presented in

Figure 6(b). For details see (38) and (66).

The figure of eight structure (Figure 6) is stabi-

lised by a single � 1=2 hyperbolic disclination line.
The disclination line starts at the top of the first

particle, sinks below the second, comes from behind

to the top of the second, sinks below the first, and

finally from behind of the first particle connects into

a loop. The disclination line makes a ‘figure of eight’

Figure 5. Mixed dipolar–quadrupolar 2D colloidal crystals. (a) The stable configuration of the most dense mixed 2D colloidal
crystal. Dashed lines show the 2D unit cell. (d) Particle positions I and J as a function of lattice constants X and Y.
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if observed from the side (along the far-field direc-

tor). In contrast to the figure of eight, the figure of

omega (66) has a straight defect line at the front side,

which sinks behind both colloidal particles and

makes an additional loop in between them. This

additional loop resembles a Greek letter � if viewed

along the particle dimer. The entangled point defect
structure (66) consists of two separate � 1=2 defect

rings, which are oriented perpendicular with respect

to each other. The larger defect ring winds around both

particles and stabilises them into a stable entangled

object. The inner smaller ring is effectively a -1 hyper-

bolic point defect with an escaped core. In terms of

entanglement, it is a ‘bystander’ as it only locally relaxes

the director field.
Figure of eight and figure of omega are chiral

objects as they break the mirror symmetry. The struc-

tures with left or right handedness are equally prob-

able and have the same free energy. The degeneracy of

the two structures can be lifted by using a non-homo-

geneous preferential nematic ordering (e.g. the �=2

cell). Observing such spontaneous formation of chiral

objects in an achiral medium is highly interesting and
could be exploited for applications in optics.

3.4 Dimers with escaped hyperbolic loops

Structures with escaped hyperbolic defect rings have

a non-singular director which is achieved by topolo-

gical point defects escaping into defect rings. In the
literature, they are also referred to as the bubble-gum

structures (39, 70, 71). In the geometry of a uniform

planar cell, these structures are rather metastable

with respect to elastic dipoles (71) or quadrupoles

and are very unlikely to form.

An interesting aspect of the escaped hyperbolic

defect rings is how to characterise their shape and

position. The spatial variations in the nematic degree

of order S within the escaped cores of these defect

rings are typically smaller than 2% (bulk Seq ¼ 0:533)

which makes them inadequate for defect position ana-

lysis. Therefore, we introduce a geometrical escape

parameter S̃ to draw centres of the escaped defect

rings. The parameter S̃ is given by (72):

S̃ ¼ 1� jn � e?j � jn � n0j; ð24Þ

where e? ¼ r� ðr � eÞe½ �=jr� ðr � eÞej, n0 ¼ 1; 0; 0ð Þ is

the far-field director, r position vector and e unit vec-

tor along the dimer. The isosurface of S̃ ,1 draws

centres of escaped hyperbolic defect rings with a pre-

cision of the order of mesh resolution.

Figure 7(a) shows a dimer bound by an escaped

hyperbolic ring in a uniform planar cell. The structure

was calculated using a guess for the initial condition of
the numerical relaxation. This was the Ansatz function

for the defect ring (72), and, as suggested by Fukuda and

Yokoyama (71), two antiparallel elastic dipoles for the

remaining director profile. The local profile of the direc-

tor within the escaped hyperbolic ring is presented in

Figure 7(b). One can observe the effective escape of the

hyperbolic defect ring in two perpendicular planes which

generates a local twist deformation. Topologically, such
an escaped defect loop is homotopic to a point defect

with topological charge of magnitude two. Locally, the

winding number -1 can be attributed to the line of the

escaped hyperbolic ring.

3.5 Hierarchical saturn-ring superstructure

In materials science, hierarchy is an interesting phe-
nomenon where material parameters at a given larger

scale control the material response at a different smal-

ler scale. Scale refers typically to either the energy or

physical size of the system but can be generalised to

almost any physical quantity. Liquid crystal colloids

are systems which can be ordered hierarchically. By

Figure 6. (a) Colloidal dimer entangled by the figure of eight defect structure. (b) Local director profile. Defect loop (in red) is
visualised by drawing isosurfaces of the nematic degree of order S ¼ 0:48. Thin lines (in blue) show the local director. Colour
refers to the online version.
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using colloidal particles of different sizes, i.e. length
scales, and nematic-induced elastic potential between

particles, we build colloidal superstructures where lar-

ger particles generate nematic profile which controls

the assembly of smaller-scale particles.

To demonstrate modelling of the hierarchical

ordering, we focus on a single larger spherical par-

ticle with homeotropic anchoring that sponta-

neously generates a Saturn-ring defect loop at the
equator. Bringing a smaller colloidal particle close

to the Saturn ring, the interaction becomes non-

zero. The attraction is locally equivalent as in the

case of approaching a straight � 1=2 disclination

line. The main conceptual difference is however

that it is the larger colloidal particle that at its own

scale generates the Saturn ring which then builds an

effective potential for smaller particles and thus
controls their assembly at another smaller scale.

Such a hierarchical ladder has no limitation for

including more that two particle scales (sizes).

Figure 8 presents several steps in the numerical

trapping of small colloidal particles into the Saturn

ring of a larger colloidal particle. For further details
and for matching to the experimental observations,

the interested reader is referred to (3).

4. Conclusions

The LdG modelling of nematic liquid crystal colloids

based on the nematic order parameter tensor has been

reviewed. Basic free energy contributions compulsory
for modelling of nematic colloids have been limited to

gradient of order, nematic phase, and surface anchor-

ing terms. Free energy has been minimised by using an

EL formalism to obtain the governing equations for the

nematic profile in bulk and at the surface. A numerical

finite difference relaxation scheme has been presented

together with the particle allocation. Examples of col-

loidal structures were shown next. Starting from single
elastic dipoles and quadrupoles, we assembled com-

bined dipolar–quadrupolar dimers. Two stable config-

urations were found. As an example of entangled

Figure 8. Hierarchical Saturn-ring superstructure. Smaller 100nm particles are trapped in the disclination loop of a Saturn-ring
defect, that has formed around a larger particle with diameter of 1�m. Step 0 corresponds to the initial configuration. Further
steps correspond to the relaxational evolution obtained by using our quasi-dynamics of the system. Disclination loops are
visualised by isosurfaces of the scalar order parameter being S ¼ 0:45 ðSeq ¼ 0:533Þ.

Figure 7. (a) Particle dimer bound by an escaped hyperbolic defect ring, also referred to as a ‘bubble-gum defect’. Grey
streamlines show the projection of the director on the given plane to visualise the true -1 hyperbolic nature of the escaped line.
(b) Director profile (in green) shows the escape into the third dimension in the centre of the hyperbolic ring. Colour refers to the
online version.
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structures, we showed a dimer bound by the figure of

eight defect structure which proves to be a new highly

robust chiral colloidal object. A dimer bound by an

escaped hyperbolic ring was calculated. Here, a non-

singular director stabilises the colloidal configuration

and again builds a new topological structure. Finally, a

hierarchical assembly of smaller sub-micrometre parti-
cles into a Saturn ring of a larger micrometre-sized

particle was shown, to demonstrate that the LdG mod-

elling can be applied to multi-scale multi-particle close-

packed colloidal system.

The LdG free energy minimisation approach has,

in combination with various numerical techniques,

strong explanatory and predictive power. All pre-

sented examples of colloidal structures have their
experimental realisations, and very often not only

qualitative but also quantitative mapping between

the modelling and experiments can be found. The

approach can be applied to a large range of scales,

highly complex geometries, chiral structures, pat-

terned particles, ferroelectric and ferromagnetic par-

ticles, complex external fields, and the model always

retains an elementary phenomenological interpreta-
tion. LdG modelling is therefore an important ele-

ment in the theoretical science of liquid crystal

colloids.

References

(1) de Gennes, P.G.; Prost, J. The Physics of Liquid
Crystals, 2nd Ed.; Oxford Science Publications:
Oxford, 1993.

(2) Onsager, L. Ann. N. Y. Acad. Sci. 1949, 51, 627–659.
(3) Skarabot, M.; Ravnik, M.; Zumer, S.; Tkalec, U.;

Poberaj, I.; Babic, D.; Musevic, I. Phys. Rev. E 2008,
77, 061706.

(4) Pires, D.; Fleury, J.-B.; Galerne, Y. Phys. Rev. Lett.
2007, 98, 247801.

(5) Whitesides, G.M.; Grzybowski, B. Science 2002,
295, 2418–2421.

(6) Vlasov, Y.A.; Bo, X.-Z.; Sturm, J.C.; Norris, D.J.
Nature 2001, 414, 289–293.

(7) Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Science
2004, 305, 788–792.
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